Projection methods solving rectangular systems of linear equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Solving a class of linear projection equations ?

Many interesting and important constrained optimization problems in mathematical programming can be translated into an equivalent linear projection equation u = P u ? (Mu + q)]: Here, P () is the orthogonal projection on some convex set (e.g. = R n +) and M is a positive semideenite matrix. This paper presents some new methods for solving a class of linear projection equations. The search direc...

متن کامل

Galerkin Projection Methods for Solving Multiple Linear Systems

In this paper, we consider using Galerkin projection methods for solving multiple linear systems A (i) x (i) = b (i) , for 1 i s, where the coeecient matrices A (i) and the right-hand sides b (i) are diierent in general. In particular, we focus on the seed projection method which generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed ...

متن کامل

Extrapolation vs. projection methods for linear systems of equations

It is shown that the four vector extrapolation methods, minimal polynomial extrapolation, reduced rank extrapolation, modified minimal polynomial extrapolation, and topological epsilon algorithm, when applied to linearly generated vector sequences, are Krylov subspace methods, and are equivalent to some well known conjugate gradient type methods. A unified recursive method that includes the con...

متن کامل

Solving Linear Systems of Equations

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1988

ISSN: 0377-0427

DOI: 10.1016/0377-0427(88)90346-9